133 research outputs found

    Modeling Particulate Emissions in Europe. A Framework to Estimate Reduction Potential and Control Costs

    Get PDF
    This paper presents the extension of the Regional Air Pollution Information and Simulation (RAINS) model that addresses present and future emissions of fine particulates in Europe, the potential for controlling these emissions and the costs of such emission reductions. Together with the existing modules dealing with the emissions of the precursor emissions of secondary aerosols such as sulphur dioxide (SO2), nitrogen oxides (NOx), ammonia (NH3) and volatile organic compounds (VOC), this extension enables the comparison of the potentials and costs for controlling primary emissions of fine particles with those of secondary aerosols and to find cost-minimal approaches for reducing ambient levels of particulate matter. The emissions of particulate matter (PM) in the RAINS model are calculated for three different size classes: the fine fraction (PM2.5), the coarse fraction (PM10 - PM2.5) and large particles (PM_>10 5m). Summed up, these three fractions represent total suspended particles (TSP). Fine particles are emitted from a large number of sources with large differences in their technical and economic properties. The methodology distinguishes 392 source categories for stationary energy combustion, industrial processes, mobile sources and agriculture. For each of these sectors, the study explores the applicable options for reducing PM emissions, their efficiency and their costs. Emissions characteristics of the individual sectors are strongly determined by country-specific conditions. The methodology estimates emission control costs of standard technologies under the specific conditions characteristic for the various European countries. Based on the assumption of the general availability of control technologies with equal technical properties and costs, a number of country-specific circumstances (level of technological advancement, installation size distribution, labor costs, etc.) are used to estimate the costs for the actual operation of pollution control equipment. For the individual source sectors, emissions are estimated based on statistical information on economic activity and emission factors that reflect hypothetical emissions if no control measures were applied. These emission factors were taken from the literature and were, to the maximum possible extent, adapted to the country-specific conditions. Actual emissions are calculated taking into account the application of emission control measures in a given sector, for which also costs are estimated. The methodology was implemented for all European countries, covering the period from 1990 to 2010. At an aggregated level, estimates for past years (1990, 1995) correspond well with other national and international inventories. However, discrepancies are found for some detailed results for individual sectors and activities, and more work will be necessary to clarify them. This preliminary implementation suggests for Europe a 50 percent decline of primary emissions of fine particles between 1990 and 1995, mainly due to the economic restructuring in central and eastern European countries. The recently tightened regulations on large combustion plants and mobile sources will further reduce PM emissions, so that for 2010 European PM emissions are expected to be 60 percent below the level of 1990. However, less improvement is expected for the health-relevant fraction of fine particles (PM2.5). It needs to be emphasized that these preliminary estimates are still associated with considerable uncertainties, and more work, involving national experts, will be necessary to obtain a verified and generally accepted European data base to estimate the potential for further reductions of fine particles in Europe. The present implementation (version 2.00) of the RAINS PM module on the Internet (www.iiasa.ac.at/rains/Rains-online.html) provides free access to the input data and results to facilitate interaction with national experts

    A Framework to Estimate the Potential and Costs for the Control of Fine Particulate Emissions in Europe

    Get PDF
    This paper presents a methodology for estimating primary PM emissions in Europe and the costs involved to reduce these emissions from the various sources in the European countries. The framework developed is compatible with existing approaches to estimate emissions and costs for SO2, NOx, NH3 and VOC in the RAINS model. Emissions of PM are released from a large variety of sources with significant technical and economic differences. The emission characteristic of the sources is also strongly influenced by country-specific conditions. The method applied considers the crucial parameters and allows sectoral and regional variation. The emissions of particulate matter (PM) in the RAINS model are calculated for three different size classes (i) fine fraction (PM2.5), (ii) coarse fraction (PM10 - PM2.5) and (iii) large particles (PM_>10 mu m). A methodology has been developed to estimate emission control costs of standard technologies under the specific conditions characteristic for the various European countries. Based on the assumption of the general availability of control technologies with equal technical properties and costs, a number of country-specific circumstances (level of technological advancement, installation size distribution, labor costs, etc.) are used to estimate the costs for the actual operation of pollution control equipment. Based on the developed methodology, a first estimate of the PM emissions in Europe was derived for the years 1990, 1995 and 2010. This estimate must be considered as preliminary, since many of the emission factors need revision and update with additional information. The projections for the year 2010 assume full implementation of the current legislation on emission controls, e.g., the EURO-IV emission standards resulting from the Auto Oil process for mobile sources, and regulations relating to the large combustion plant directive of the European Union. Major reductions in PM emissions occurred between 1990 and 1995, mainly because of the economic restructuring in Eastern Europe where many old coal power stations were retired. Between 1990 and 1995, TSP emissions declined by 41 percent; for 2010 a decline of 58 percent is projected. Emission reductions are most efficient for larger particles; for 2010, PM10 is calculated to decline by 56 percent, and PM2.5 by 48 percent. Consequently, fine fraction (PM2.5) will be relatively more important in the future (38 percent of TSP in 2010) compared to 31 percent of TSP in 1990. In 1990, combustion in energy industries, small non-industrial combustion sources, production processes and road transport contributed about 20 percent each to total TSP emissions in the EU-15. In the non-EU countries, small sources and power plants were responsible for more than 30 percent each, while road transport contributed only three percent of TSP. In those countries, small sources (domestic coal and wood combustion) are expected to increase their share to 45 percent in 2010, while in the EU-15 mobile sources will become the most important source category for TSP emissions (45 percent). For PM2.5, mobile sources were the largest contributor in 1990 in the EU-15 countries (31 percent). This share is expected to decline slightly by 2010 (28 percent) due to the strict regulations that were recently introduced. In the non-EU countries, industrial production processes were the largest source of PM2.5 emissions (36 percent), while in 2010 small combustion sources in the domestic sector will dominate (38 percent). The present implementation (version 1.03) of the RAINS PM module on the Internet (www.iiasa.ac.at/~rains/PM/pm-home.html) provides free access to the input data and results to facilitate interaction with national experts

    Emissions of air pollutants for the World Energy Outlook 2011 Energy Scenarios

    Get PDF
    This report examines global emissions of major air pollutants (SO2, NOx, PM2.5) resulting from energy scenarios developed for the World Energy Outlook 2012 (OECD/IEA, 2012). Estimates include emissions for 25 regions according to the aggregation used in the IEA World Energy Model (WEM). Emissions have been estimated using the IIASA GAINS model. The 2012 Outlook discusses four energy pathways for the next 25 years. The central scenario, the New Policies (NP) scenario, takes into account recently announced policy commitments and assumes that they are implemented in a cautious manner. The Current Policies (CP) scenario assumes no new policies beyond those adopted by mid-2012. The High Energy Efficiency (HE) scenario simulates the effects of policies aimed at promoting energy efficiency in all countries in the world. The 450 scenario assumes radical policy action consistent with limiting the global temperature increase to two degrees Celsius. All four pathways were implemented into the GAINS model. Next, emissions of air pollutants were calculated. Calculations take into account the current air pollution control legislation and policies in each country or region as adopted or in the pipeline by mid-2012. Presented in this report estimates do not include emissions from international shipping as well as cruising emissions from aviation. They also do not include emissions from biomass burning (deforestation, savannah burning, and vegetation fires). In 2010, world emissions of SO2 from sources covered in this report were about 86 million tons. OECD countries contributed 21 percent of this total. Implementation of pollution controls for the Current Policies Scenario causes an eight percent decrease in world emissions of SO2 in 2020 compared with 2010. This is a combined result of reducing emissions from OECD countries (by about 24 percent), increase in India, and a decrease in China, Russia, South Africa, and Middle East. After 2020, emissions from many non-OECD countries continue rising, which causes an increase of world emissions by about five million tons until 2035. Particularly remarkable is the increase in SO2 emissions in India. The corresponding numbers for NOx are: 85 million tons in 2010 (of which 35 percent originated from the OECD countries), five percent decrease until 2020 and next increase until 2035 by 12 million tons. Emissions of PM2.5 (43 million tons in 2010) are dominated by sources from non-OECD countries - 90 percent of total. Changes in the emissions until 2035 are rather small, with a seven percent decrease in the OECD countries and a stabilization in the developing world. The 450 Scenario causes an important reduction in emissions of air pollutants. In 2035, the emissions of SO2 are 36 percent lower than in the Current Policies case. Emissions of NOx decrease by 32 percent and those of PM2.5 by 11 percent. Emissions for the New Policies and the High Energy Efficiency scenarios lie between those for the Current Policies and the 450 scenarios. Costs of controlling emissions of sulphur and nitrogen oxides and PM (dust) in 2010 are estimated at about 217 billion Euros/a. Until 2035, these costs increase in the Current Policies Scenario by more than a factor of two, which is due to higher activity levels and increasing stringency of controls. In 2035, 61 percent of the total costs are the expenditures on reducing emissions from road transport. The 450 Scenario brings 32 percent cost savings in 2035 compared to the Current Policies case. This study also estimates health impacts of air pollution in Europe, China and India in terms of life years lost (YOLL) attributable to the exposure from anthropogenic emissions of PM2.5. PM concentrations as in 2010 cause a loss of about 2.2 billion life-years. This estimate is dominated by impacts in China and India. The Current Policies Scenario implies an increase of the YOLL indicator in 2035 by 46 percent to 3.3 billion. Decrease of PM2.5 concentrations as in the 450 Scenario in 2035 saves about 870 million life-years. Lower impact indicators and lower control costs in the scenarios that simulate effects of policies towards reducing energy demand and the use of fossil fuels clearly demonstrate important co-benefits of such policies for air pollution

    Emissions of air pollutants for the World Energy Outlook 2012 energy scenarios

    Get PDF
    This report examines global emissions of major air pollutants (SO2, NOx, PM2.5) resulting from energy scenarios developed for the World Energy Outlook 2012 (OECD/IEA, 2012). Estimates include emissions for 25 regions according to the aggregation used in the IEA World Energy Model (WEM). Emissions have been estimated using the IIASA GAINS model. The 2012 Outlook discusses four energy pathways for the next 25 years. The central scenario, the New Policies (NP) scenario, takes into account recently announced policy commitments and assumes that they are implemented in a cautious manner. The Current Policies (CP) scenario assumes no new policies beyond those adopted by mid-2012. The High Energy Efficiency (HE) scenario simulates the effects of policies aimed at promoting energy efficiency in all countries in the world. The 450 scenario assumes radical policy action consistent with limiting the global temperature increase to two degrees Celsius (2 oC). All the four pathways were implemented into the GAINS model. Next, emissions of air pollutants were calculated. Calculations take into account the current air pollution control legislation and policies in each country or region as adopted or in the pipeline by mid-2012. Presented in this report estimates do not include emissions from international shipping as well as cruising emissions from aviation. They also do not include emissions from biomass burning (deforestation, savannah burning, and vegetation fires). In 2010, world emissions of SO2 from sources covered in this report were about 86 million tons. OECD countries contributed 21 percent of this total. Implementation of pollution controls for the Current Policies Scenario causes an eight percent decrease in world emissions of SO2 in 2020 compared with 2010. This is a combined result of reducing emissions from OECD countries (by about 24 percent), increase in India, and a decrease in China, Russia, South Africa, and Middle East. After 2020, emissions from many non-OECD countries continue rising, which causes an increase of world emissions by about five million tons until 2035. Particularly remarkable is the increase in SO2 emissions in India. The corresponding numbers for NOx are: 85 million tons in 2010 (of which 35 percent originated from the OECD countries), five percent decrease until 2020 and next increase until 2035 by 12 million tons. Emissions of PM2.5 (43 million tons in 2010) are dominated by sources from non-OECD countries -- 90 percent of total. Changes in the emissions until 2035 are rather small, with a seven percent decrease in the OECD countries and a stabilization in the developing world. The 450 Scenario causes an important reduction in emissions of air pollutants. In 2035, the emissions of SO2 are 36 percent lower than in the Current Policies case. Emissions of NOx decrease by 32 percent and those of PM2.5 by 11 percent. Emissions for the New Policies and the High Energy Efficiency scenarios lie between those for the Current Policies and the 450 scenarios. Costs of controlling emissions of sulphur and nitrogen oxides and PM (dust) in 2010 are estimated at about 217 billion Euros/a. Until 2035, these costs increase in the Current Policies Scenario by more than a factor of two, which is due to higher activity levels and increasing stringency of controls. In 2035, 61 percent of the total costs are the expenditures on reducing emissions from road transport. The 450 Scenario brings 32 percent cost savings in 2035 compared to the Current Policies case. This study also estimates health impacts of air pollution in Europe, China and India in terms of life years lost (YOLL) attributable to the exposure from anthropogenic emissions of PM2.5. PM concentrations as in 2010 cause a loss of about 2.2 billion life-years. This estimate is dominated by impacts in China and India. The Current Policies Scenario implies an increase of the YOLL indicator in 2035 by 46 percent to 3.3 billion. Decrease of PM2.5 concentrations as in the 450 Scenario in 2035 saves about 870 million life-years. Lower impact indicators and lower control costs in the scenarios that simulate effects of policies towards reducing energy demand and the use of fossil fuels clearly demonstrate important co-benefits of such policies for air pollution

    Inhibition of TNF receptor p55 by a domain antibody attenuates the initial phase of acid-induced lung injury in mice

    Get PDF
    Background: Tumor necrosis factor-α (TNF) is strongly implicated in the development of acute respiratory distress syndrome (ARDS), but its potential as a therapeutic target has been hampered by its complex biology. TNF signals through two receptors, p55 and p75, which play differential roles in pulmonary edema formation during ARDS. We have recently shown that inhibition of p55 by a novel domain antibody (dAb™) attenuated ventilator36 induced lung injury. In the current study we explored the efficacy of this antibody in mouse models of acid-induced lung injury, to investigate the longer consequences of treatment. Methods: We employed two acid-induced injury models, an acute ventilated model and a resolving spontaneously breathing model. C57BL/6 mice were pretreated intratracheally or intranasally with p55-targeting dAb or non-targeting ‘dummy’ dAb, 1 or 4 hours before acid instillation. Results: Acid instillation in the dummy dAb group caused hypoxemia, increased respiratory system elastance, pulmonary inflammation and edema in both the ventilated and resolving models. Pretreatment with p55-targeting dAb significantly attenuated physiological markers of ARDS in both models. p55-targeting dAb also attenuated pulmonary inflammation in the ventilated model, with signs that altered cytokine production and leukocyte recruitment persisted beyond the very acute phase. Conclusions: These results demonstrate that the p55-targeting dAb attenuates lung injury and edema formation in models of ARDS induced by acid aspiration, with protection from a single dose lasting up to 24 hours. Together with our previous data, the current study lends support towards the clinical targeting of p55 for patients with, or at risk of ARDS

    Environmental improvements of the 2012 revision of the Gothenburg Protocol

    Get PDF
    In May 2012, Parties to the Convention on Long-range Transboundary Air Pollution have reached agreement on a revision of its Gothenburg multi-pollutant/multi-effect protocol. Inter alia, the revised protocol includes quantitative emission reduction commitments for the year 2020. This report estimates the improvements for human health and ecosystems protection that can be expected from the committed emission reductions in 2020
    • …
    corecore